MATHCOUNTS $\%$ [Innin $^{\circ}$

March 2015 Activity Solutions

Warm-Up!

1. Since the $m \angle X=30^{\circ}$ and $m \angle Y=90^{\circ}$, it follows that the $m \angle Z=180-(90+30)=$ $180-120=60^{\circ}$. Therefore, $\Delta \mathrm{XYZ}$ is a 30-60-90 right triangle. In a 30-60-90 right triangle, the length of the longer leg, which is opposite the 60° angle, is $\sqrt{ } 3$ times the length of the shorter leg, which is opposite the 30° angle, and the length of the hypotenuse is twice that of the shorter leg. As the figure shows, in triangle XYZ, side YZ is the shorter leg, side XY is the longer leg and side XZ is the hypotenuse. We are told $Y Z=6$ units, so it follows that $X Y=6 \sqrt{ } 3$ units and $X Z=12$ units.

2. Based on the information provided in the problem, we've indicated many measurements of the figure here. Since the width of the rectangle is also the diameter of each circle, we know that the radius of each circle is 6 units. Since $\mathrm{NO}+\mathrm{OP}+\mathrm{PQ}=16$, with segments NO and PQ being radii, we can write the equation $6+x+6=16$, when $\mathrm{OP}=x$. Simplifying leads to $6+x+6=16 \rightarrow x+12=16 \rightarrow$ $x=4$ units.

3. Since segment $A P$ is tangent to the circle at A, segment $P A$ will be perpendicular to radius AC. Because the area of the circle is 256π units 2, we can write the following equation and solve for $r: 256 \pi=\pi r^{2} \rightarrow 256=r^{2} \rightarrow r=$ 16 units. Using the Pythagorean Theorem with right triangle APC, we now can write the following equation and solve for $\mathrm{PC}:(\mathrm{PC})^{2}=12^{2}+16^{2} \rightarrow(\mathrm{PC})^{2}=$ $144+256 \rightarrow(P C)^{2}=400 \rightarrow P C=20$ units.

The Problems are solved in the MATHCOUNTS ${ }^{\circ}$ Jll

Follow-up Problems

4. In the figure shown here, we have indicated the different radii and right angles that are known from the information given. Additionally, since each side of the square is 4 units, we can see how the right side is divided into segments of lengths r units, r units and $4-2 r$ units. Thus, $A B=4-2 r$. Similarly, $A C=4-2 r$. Seeing that $B C=2 r$ and using the Pythagorean Theorem with right triangle ABC, we can write the following equation
 and solve for $r:(2 r)^{2}=(4-2 r)^{2}+(4-2 r)^{2} \rightarrow 4 r^{2}=16-16 r+4 r^{2}+16-16 r+4 r^{2} \rightarrow$ $0=4 r^{2}-32 r+32 \rightarrow 0=r^{2}-8 r+8$. Using the Quadratic Formula with $a=1, b=-8$ and $c=8$, we get $r=\frac{8 \pm \sqrt{(-8)^{2}-4(1)(8)}}{2(1)}=\frac{8 \pm \sqrt{64-32}}{2}=\frac{8 \pm \sqrt{32}}{2}=\frac{8 \pm 4 \sqrt{2}}{2}=4 \pm 2 \sqrt{2}$. Since $4+2 \sqrt{2}$ is too large (it's greater than the side of the square), the radius is $4-2 \sqrt{2}$ units.
5. In the figure shown here, we have added the segment from B that is perpendicular to radius AP. This segment completes rectangle BCPO, and now $\mathrm{BQ}=\mathrm{PC}$, so $\mathrm{PC}=9$ units. Radius AP is 16 units, so $\mathrm{AC}=16-9=$ 7 units. When we connect the two centers of the externally tangent circles, we get $A B=16+9=25$ units. Now, using the Pythagorean Theorem with
 right triangle $A B C$, we have $25^{2}=7^{2}+(B C)^{2} \rightarrow 625=49+(B C)^{2} \rightarrow$
$(B C)^{2}=576 \rightarrow B C=24$ units. Because of rectangle $B C P Q$, we now know $P Q=24$ units, too.

6. Let's start by drawing a segment from center point A perpendicular to the side of the square (also the diameter of the semicircle) at point B, and drawing another segment from A to C, the midpoint of that same side, as shown. Let
$4 r$ represent the radius of the circle. Then $\mathrm{AB}=4-r, \mathrm{BC}=2-r$ and AC $=r+2$. Using the Pythagorean Theorem with right triangle ABC, we have $(4-r)^{2}+(2-r)^{2}=(r+2)^{2} \rightarrow\left(16-8 r+r^{2}\right)+\left(4-4 r+r^{2}\right)=r^{2}+4 r+4 \rightarrow$ $2 r^{2}-12 r+20=r^{2}+4 r+4 \rightarrow r^{2}-16 r+16=0$. Since this quadratic cannot be factored, we'll use the quadratic formula, $r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$, to solve for r. Substituting $a=1, b=-16, c=16$ into the formula, we have $r=\frac{16 \pm \sqrt{16^{2}-4 \times 1 \times 16}}{2 \times 1}$. Solving for r, we get $r=\frac{16 \pm \sqrt{256-64}}{2}=\frac{16 \pm \sqrt{192}}{2}=\frac{16 \pm 8 \sqrt{3}}{2}=8 \pm 4 \sqrt{3}$. Since $8-4 \sqrt{3}>4$, this root will not work. Therefore, $r=8-4 \sqrt{3}$ units.
7. Consider $\triangle A B C$, in which, $m \angle A=45^{\circ}$, and the side opposite $\angle A$, side $B C$, has length 8 units. If we draw a line from vertex B to a point D on side $A C$ so that segment $B D$ is perpendicular to side $A C, \triangle A B C$ is divided into two smaller triangles. As the figure shows, $\triangle A B D$ is a $45-45-90$ right triangle, and $\triangle B C D$ is a 30-60-90 right triangle. We are asked to determine the
 sum of the two missing side lengths of $\triangle A B C, A B+A C$. Since $\triangle B C D$ is a 30-60-90 right triangle with hypotenuse $B C$ of length 8 units, it follows that the shorter leg, side BD has length 4 units and the longer leg, side $D C$ has length $4 \sqrt{ } 3$ units. Now, since $\triangle A B D$ is a $45-45-90$ right triangle with leg BD of length 4 units, it follows that leg AD also has length 4 units and hypotenuse $A B$ has length $4 \sqrt{ } 2$ units. We now know the missing side lengths for $\triangle A B C$ are $A B=4 \sqrt{ } 2$ units and $A C=4+4 \sqrt{ } 3$ units, so $A B+A C=4 \sqrt{ } 2+4+4 \sqrt{ } 3$ units.
8. Let's extend segments $A D$ and $B C$ until they intersect at point E, as shown. Notice that $m \angle E B A=$ $180-120=60^{\circ}$, and $m \angle B A E=180-90=90^{\circ}$. That means the $m \angle E=30^{\circ}$, and $\triangle A B E$ is a $30-60-90$ right triangle. We know that $A B=3$ units, so using the properties of 30-60-90 right triangles, $\mathrm{EB}=6$ units. Now consider right triangle CDE with $m \angle \mathrm{C}=90^{\circ}$ and $m \angle \mathrm{E}=30^{\circ}$. It follows that $m \angle \mathrm{D}=60^{\circ}$ making $\triangle \mathrm{CDE}$ a 30-60-90 right triangle. The length of the longer leg is $E C=E B+B C=6+4=10$ units. Segment $C D$ is the shorter leg of $\triangle C D E$. Therefore, according to the properties of 30-60-90 right triangles, we have $C D=\frac{E C}{\sqrt{3}}=\frac{10}{\sqrt{3}}=\frac{10 \sqrt{ } 3}{3}$ units.
