MATHCOUNTS $)$ (linnie

April 2015 Activity Solutions

Warm-Up!

1. We can solve the quadratic equation $x^{2}-x-6=0$ by factoring to get: $(x-3)(x+2)=0$, so $x-3=0$ and $x=3$, or $x+2=0$ and $x=-2$. The product of the two solutions is $3 \times(-2)=-6$.
2. From the information provided, we have the following equation: $M(M-6)=-5$, which can be rewritten as the quadratic equation $M^{2}-6 M+5=0$. Factoring, we get $(M-5)(M-1)=0$. So $M-5=0$ and $M=5$, or $M-1=0$ and $M=1$. The sum of the possible values of M is $5+1=6$.
3. Since $x=3$ and $x=-4 / 3$ are the solutions to $k x^{2}-5 x-12=0$, we know $x-3=0$ or $3 x=-4$ $\rightarrow 3 x+4=0$. The quadratic, then, can be written as the product of the two binomials $x-3$ and $3 x+4$ to get $(x-3)(3 x+4)=3 x^{2}+4 x-9 x-12=3 x^{2}-5 x-12$. We now can see that $k=3$.
4. We can solve the cubic equation $x^{3}+3 x^{2}-10 x=0$ by factoring to get: $(x)(x+5)(x-2)=0$, so $x=0$, or $x+5=0$ and $x=-5$, or $x-2=0$ and $x=2$. The mean of these three solutions, then, is $(-5+0+2) / 3=-3 / 3=-1$.

Follow-up Problems

5. We are asked to find the value of $(a-1)(b-1)$. When we multiply using the distributive property, we get $a b-(a+b)+1$. Now since a and b are solutions to the quadratic equation $x^{2}-5 x+9=0$, we can write $(x-a)(x-b)=0 \rightarrow x^{2}-(a+b) x+a b=0$. That means $a+b=5$ and $a b=9$. Thus, $(a-1)(b-1)=a b-(a+b)+1=9-5+1=5$.
6. Suppose m and n are the roots of the quadratic equation $x^{2}-63 x+k=0$. We know that $m+n=63$ and $m n=k$. We are told that both roots are prime numbers. The smallest prime is 2 , and $63-2=61$. Since 2 and 61 both are prime, we have the possible roots $m=2$ and $n=61$. In this case, $k=m n=2 \times 61=122$. Since all prime numbers except 2 are odd, and the sum of any two odd primes will result in an even number, there is no other pair of primes that can have a sum of 63 . Therefore, 122 is the the 1 , and only, possible value of k.
7. Let's begin by manipulating the quadtratic equation $(2003 / 2004) x+1+(1 / x)=0$ to get a leading coefficient of 1 . We do so by multiplying both sides of the equation by 2004/2003 and get $x+2004 / 2003+(2004 / 2003)(1 / x)=0$. Next, we want there to be no fractions with variables in the denominator, so we can multiply both sides of the equation by x to get $x^{2}+(2004 / 2003) x+2004 / 2003=0$. If p and q are roots of this equation, we are asked to find the sum of their reciprocals, $1 / p+1 / q=(p+q) / p q$. Since p and q are roots, it follows that $(x-p)(x-q)=0 \rightarrow x^{2}-(p+q) x+p q=0$. That means $p+q=-2004 / 2003$ and $p q=2004 / 2003$. Substituting these values, we see that the sum of the reciprocals of the roots is $(p+q) / p q=(-2004 / 2003) /(2004 / 2003)=(-2004 / 2003)(2003 / 2004)=-1$.
8. If a and b are the roots of $x^{2}+p x+m=0$, we know that $m=a b$ and $p=-(a+b)$. We are told that the roots of $x^{2}+m x+n=0$ are $2 a$ and $2 b$, so we know that $n=4 a b$ and $m=-2(a+b)$. Since $m=a b$ and $n=4 a b$, it follows that $n=4 m$. And since $m=-2(a+b)$ and $p=-(a+b)$, it follows that $p=m / 2$. Therefore, $n / p=4 m /(m / 2)=4 m \times(2 / m)=8$.
