Warm-Up!

1. We are told that \(x = y + 3 \) and \(y = z - 5 \), which can be rewritten as \(y + 5 = z \). We are asked to determine the value of \(z - x \). Substituting we get \((y + 5) - (y + 3) = y + 5 - y - 3 = 5 - 3 = 2\).

2. If we subtract from the total the $30 charged to hook the car to the tow truck, we see that \(59.75 - 30 = 29.75 \) was the charge for the mileage. So from the school, Mr. Alman's car was towed \(29.75 \div 1.75 = 17 \) miles to his house.

3. From the information given, we can write the following two equations, where \(x \) represents the weight of Tweedledee and \(y \) is the weight of Tweedledum: \(x + 2y = 361 \) and \(2x + y = 362 \). Adding the two equations, we get \(3x + 3y = 723 \). Dividing each side by 3, we see that the sum of their weights is \(x + y = 241 \) pounds.

4. Since we don’t know the dimensions of the rectangle let's call them \(L \) and \(W \). We are told that the rectangle has an area of 108 in\(^2\), which means that \(LW = 108 \). We are looking for the new area after the length and width are each increased by 1. In other words, \((L + 1)(W + 1)\). If we expand this expression we get \(LW + L + W + 1 \). Well, we know that \(LW = 108 \). We are told that the perimeter of the rectangle is 42, which means that \(2(L + W) = 42 \rightarrow L + W = 21 \). Substituting, we now have \(LW + (L + W) + 1 = 108 + 21 + 1 = 130 \) in\(^2\).

The Problem is solved in the MATHCOUNTS®Mini video.

Follow-up Problems

5. A total of \(40 \times 2.15 = 86 \) would have been paid for the forty bowls of chocolate ice cream. The remaining \(158.20 - 86 = 72.20 \) would have been paid for bowls of vanilla ice cream. At $1.90 per bowl, that would mean \(72.20 \div 1.90 = 38 \) bowls of vanilla ice cream were sold. Thus, a total of \(40 + 38 = 78 \) bowls of ice cream were sold.

6a. We are told that the perimeter of the painting is 48 inches. Since adding a frame that results in a one-inch margin around the painting essentially adds an additional 2 inches at each corner of the painting, the outer perimeter of the frame is \(48 + 8 = 56 \) in.

6b. We are told that the perimeter of the painting is 48 inches. That means \(2L + 2W = 48 \). As the figure shows, the area of the frame is the sum of the areas of the \(1 \times L \) regions at the top and bottom of the painting, the \(1 \times W \) regions on either side and the \(1 \times 1 \) regions at each of the four corners. Thus, the area is of the frame is \(2L + 2W + 4 = 48 + 4 = 52 \) in\(^2\).

7. Let \(p \) represent the number of pit bulls, \(c \) is the number of chihuahuas and \(m \) is the number of mutts. The second sentence of the problem yields the following equations, where \(A \) is the total number of dogs: \(p = A - 23 \), \(c = A - 17 \), \(m = A - 28 \) and \(A = p + c + m \). If we add the first three equations we get \(p + c + m = 3A - 68 \). Substituting, we get \(A = 3A - 68 \). We now solve to determine that the total number of dogs at the pound is \(2A = 68 \rightarrow A = 34 \) dogs.
8. This problem can be solved several ways. First let's solve it algebraically. We are told that Douglas' favorite number is a positive two-digit integer; let's call it AB where A is the tens digit and B is the units digit. That means that the value of his favorite number is 10A + B. Then a new number is created, AB7, where A now is the hundreds digit, B now is the tens digit and 7 is the units digit. The value of the new number is 100A + 10B + 7. Finally, we are told that the new number is 385 more than Douglas' favorite number. So we have 100A + 10B + 7 = 10A + B + 385. Subtracting 10A, B and 7 from both sides yields 90A + 9B = 378. Dividing both sides by 9 gives us 10A + B = 42. This is Doug's favorite number.

We could also have solved the problem logically by setting up the vertical addition problem:

```
  3 8 5
+ A B
  A B 7
```

Notice that 5 + B = 7, so B must equal 2. We can then substitute 2 for B in the problem to get:

```
  3 8 5
+ A 2
  A 2 7
```

The only integer from 1 to 9 that yields a units digit of 2 when added to 8 is 4. It follows that:

```
  3 8 5
+ 4 2
  4 2 7
```

Thus, Douglas’ favorite number is 42.