This section of the competition consists of eight problems, which will be presented in pairs. Work on one pair of problems will be completed and answers will be collected before the next pair is distributed. The time limit for each pair of problems is six minutes. The first pair of problems is on the other side of this sheet. When told to do so, turn the page over and begin working. This round assumes the use of calculators, and calculations also may be done on scratch paper, but no other aids are allowed. All answers must be complete, legible and simplified to lowest terms. Record only final answers in the blanks in the left-hand column of the problem sheets. If you complete the problems before time is called, use the time remaining to check your answers.

<table>
<thead>
<tr>
<th>Problem 1</th>
<th>Problem 2</th>
<th>Scorer's Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NATIONAL SPONSORS
Raytheon Company
Northrop Grumman Foundation
U.S. Department of Defense
National Society of Professional Engineers
CNA Insurance
Phillips 66
Texas Instruments Incorporated
3Mgives
Art of Problem Solving
NextThought

2018 MATHCOUNTS National Competition Sponsor

FOUNDING SPONSORS: National Society of Professional Engineers, National Council of Teachers of Mathematics and CNA Foundation

Copyright MATHCOUNTS, Inc. 2017. All rights reserved.
1. ________ degrees

In the figure, points P and Q lie on segments AC and BC, respectively. Segments AQ and BP intersect at X. The measures of angles PAQ and PBQ are 42 degrees and 37 degrees, respectively. The measure of angle PXQ is 118 degrees. What is the measure of angle ACB?

2. __________

What is the least common multiple of 143 and 1001?
2018 MATHCOUNTS®
School Competition
Target Round
Problems 3 & 4

<table>
<thead>
<tr>
<th>Problem 3</th>
<th>Problem 4</th>
<th>Scorer’s Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DO NOT BEGIN UNTIL YOU ARE INSTRUCTED TO DO SO.

NATIONAL SPONSORS
Raytheon Company
Northrop Grumman Foundation
U.S. Department of Defense
National Society of Professional Engineers
CNA Insurance
Phillips 66
Texas Instruments Incorporated
3Mgives
Art of Problem Solving
NextThought

2018 MATHCOUNTS National Competition Sponsor

FUNDING SPONSORS: National Society of Professional Engineers, National Council of Teachers of Mathematics and CNA Foundation
Copyright MATHCOUNTS, Inc. 2017. All rights reserved.
3. If n is a positive integer such that n^3 is a four-digit number with thousands digit 9, what is the value of n?

4. Latoya created this table showing how she spent her time yesterday. She wants to make a pie chart (circle graph) of this data. What is the sum, in degrees, of the central angles of the regions representing the hours she spent at school and the hours she spent doing homework?

<table>
<thead>
<tr>
<th>Latoya’s Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activity</td>
</tr>
<tr>
<td>Hours</td>
</tr>
</tbody>
</table>
2018 School Competition
Target Round
Problems 5 & 6

Name ________________________________

DO NOT BEGIN UNTIL YOU ARE INSTRUCTED TO DO SO.

<table>
<thead>
<tr>
<th>Problem 5</th>
<th>Problem 6</th>
<th>Scorer's Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NATIONAL SPONSORS
Raytheon Company
Northrop Grumman Foundation
U.S. Department of Defense
National Society of Professional Engineers
CNA Insurance
Phillips 66
Texas Instruments Incorporated
3Mgives
Art of Problem Solving
NextThought

2018 MATHCOUNTS
National Competition Sponsor

FOUNDING SPONSORS: National Society of Professional Engineers, National Council of Teachers of Mathematics and CNA Foundation

Copyright MATHCOUNTS, Inc. 2017. All rights reserved.
5. Three dogs arrived at the dog park at three different times, with their three owners, using three different leash colors. The Dalmatian was next to arrive after the Schnauzer. The dog with the red leash is owned by the 7th grader. The Poodle was not the first to arrive. The Schnauzer does not use a green leash. If the 6th grader owns the Dalmatian, then the Poodle’s leash is blue. The 8th grader arrived first. What is the product of the grade levels of the student who arrived second, the student who owns the Poodle and the student who uses the green leash?

6. Three circles are inscribed in a rectangle of width \(w \) and height \(h \) as shown. Two of the circles are congruent and are each tangent to two adjacent sides of the rectangle and to each other. The other circle is larger and is tangent to three sides of the rectangle and to the two smaller circles. What the ratio of \(h \) to \(w \)? Express your answer as a decimal to the nearest hundredth.
MATHCOUNTS®

2018
School Competition
Target Round
Problems 7 & 8

Name ____________________________

DO NOT BEGIN UNTIL YOU ARE INSTRUCTED TO DO SO.

<table>
<thead>
<tr>
<th>Problem 7</th>
<th>Problem 8</th>
<th>Scorer's Initials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NATIONAL SPONSORS

Raytheon Company
Northrop Grumman Foundation
U.S. Department of Defense
National Society of Professional Engineers
CNA Insurance
Phillips 66
Texas Instruments Incorporated
3Mgives
Art of Problem Solving
NextThought

Raytheon

2018 MATHCOUNTS
National Competition Sponsor

FOUNDING SPONSORS: National Society of Professional Engineers, National Council of Teachers of Mathematics and CNA Foundation

Copyright MATHCOUNTS, Inc. 2017. All rights reserved.
7. A box contains 4 chocolates and 1 fruit chew. Clark and Chloe take turns drawing a treat out of the box without replacement. Whoever draws the fruit chew wins. Clark draws first. What is the probability that Chloe wins? Express your answer as a common fraction.

8. A rhombus has diagonals of length 12 units and 16 units. It is rotated 90 degrees and positioned, as shown, such that the shorter diagonal of the rotated figure is collinear with the longer diagonal of the original with an overlap of 4 units. What is the area of the overlapping shaded region? Express your answer as a decimal to the nearest hundredth.