MATHCOUNTS J Jlinnis

Warm-Up!

1. Let n be the sum of the seven numbers. We are told that the average (mean) of the seven numbers is 43 . It follows that $n \div 7=43 \rightarrow n=301$.
2. We know that the largest of the seven numbers from the previous problem is 55 , so let m be the sum of the remaining six numbers. We determine the sum of the remaining six numbers to be $m+55=301 \rightarrow m=246$. Therefore, the average of these six numbers is $246 \div 6=41$.
3. If we subtract the second equation from the first equation we get

$$
\begin{aligned}
u+v+w+x+y+z & =45 \\
-(v+w+x+y+z & =21) \\
\hline u & =24
\end{aligned}
$$

4. When we expand the given product we get $(a+b)(a+b)=a^{2}+a b+a b+b^{2}=\boldsymbol{a}^{2}+\mathbf{2 a b}+\boldsymbol{b}^{2}$.
5. For the first number, let x and y be the numerator and denominator, respectively. For the second number, let u and v be the numerator and denominator, respectively. We are told that $\frac{x}{y}+\frac{u}{v}=6$, which can be rewritten as $\frac{x v+u y}{y v}=6 \rightarrow x v+u y=6 y v$. We are also told that $\frac{x}{y} \times \frac{u}{v}=7$, which can be rewritten as $\frac{x u}{y v}=7 \rightarrow x u=7 y v$. We are asked to find the sum of reciprocals of the two numbers, $\frac{y}{x}+\frac{v}{u}$, which can be rewritten as $\frac{u y+x v}{x u}$. Substituting, we have $\frac{u y+x v}{x u}=\frac{6 y v}{7 y v}=\frac{\mathbf{6}}{\mathbf{7}}$.

A simpler way may be to let the two numbers be a and b. We are told that $a+b=6$ and $a b=7$. We are asked to find $\frac{1}{a}+\frac{1}{b}$. Getting a common denominator of $a b$, this can be rewritten as $\frac{a+b}{a b}$. Substituting our two unknown values, we see that $\frac{a+b}{a b}=\frac{\mathbf{6}}{\mathbf{7}}$.

The Problem is solved in the MATHCOUNTS Mini.

Follow-up Problems

6. Let's start by squaring each side of the given equation to get

$$
\begin{aligned}
\left(a+\frac{1}{a}\right)^{2} & =3^{2} \\
a^{2}+1+1+\frac{1}{a^{2}} & =9 \\
a^{2}+2+\frac{1}{a^{2}} & =9 \\
a^{2}+\frac{1}{a^{2}} & =7 .
\end{aligned}
$$

7. Let's start by cubing each side of the given equation to get

$$
\begin{aligned}
\left(a+\frac{1}{a}\right)^{3} & =3^{3} \\
\left(a+\frac{1}{a}\right)^{2}\left(a+\frac{1}{a}\right) & =27 \\
\left(a^{2}+2+\frac{1}{a^{2}}\right)\left(a+\frac{1}{a}\right) & =27 \\
a^{3}+a+2 a+\frac{2}{a}+\frac{1}{a}+\frac{1}{a^{3}} & =27 \\
a^{3}+3 a+\frac{3}{a}+\frac{1}{a^{3}} & =27 .
\end{aligned}
$$

If we factor a 3 out of the two middle terms of the expression on the left-hand side of the equation, we have

$$
a^{3}+3\left(a+\frac{1}{a}\right)+\frac{1}{a^{3}}=27
$$

Since we know that $a+\frac{1}{a}=3$, we can substitute and simplify to get

$$
\begin{aligned}
a^{3}+3(3)+\frac{1}{a^{3}} & =27 \\
a^{3}+9+\frac{1}{a^{3}} & =27 \\
a^{3}+\frac{1}{a^{3}} & =18 .
\end{aligned}
$$

8. Since we ultimately want the product of the three integers, let's start by multiplying the products of the pairs we are given. We have $(x y)(y z)(x z)=4 \times 18 \times 50 \rightarrow x^{2} y^{2} z^{2}=3600 \rightarrow$ $(x y z)^{2}=3600$. Now if we take the square root of each side, we get $x y z=60$, since x, y and z are positive numbers.
9. Let n be the sum, and m be the mean of the seven numbers. We can write $n \div 7=m \rightarrow$ $n=7 \mathrm{~m}$. We are told that when one number, call it x, is removed from the list, the mean of the remaining six numbers is 5 less than the mean of the original seven numbers. That means $(n-x) \div 6=m-5 \rightarrow n-x=6 m-30 \rightarrow n=6 m-30+x$. Since we have two expressions that are each equal to n, we can set them equal to one another. Doing so yields $7 m=6 m-30+x$. With further algebraic manipulation, we get $m-x=-30$. That means the positive difference between the two quantities is $x-m=30$.
10. In fact, it's not a coincidence. Consider the following list of seven numbers: $2,3,5,7,11,14$, 21. The mean of these seven numbers is 9 . Let's find the difference between each of the seven numbers and the mean. The seven differences are $-7,-6,-4,-2,2,5,12$. Notice that the sum of these differences is $-7+(-6)+(-4)+(-2)+2+5+12=0$. The sum of the differences in the mean of list of numbers and each number in the list must always be 0 . So, if we remove 21 from our original list, the mean of the remaining six numbers is 7 , which is 2 less than our original mean. The difference between the original mean and the number that was removed is 12 . Notice that the sum of the differences of the each of the remaining six numbers and the original mean is $7+(-6)+(-4)+(-2)+2+5=-12$. It makes sense that the difference between the number that was removed and the original mean must be $6 \times 2=12$ because the sum of the differences in the original mean and each number in the orignal list must be 0 .
