## MATHCOUNTS JJllinis

## Warm-Up!

1. We are told that $a=b^{2}-3$. Since $b^{2}$ will always be non-negative, we will get the minimum value of $a$ when $b=0$. Therefore, the smallest possible value of $a$ is $a=0^{2}-3=-3$.
2. (a) $(x+1)^{2}=(x+1)(x+1)=x^{2}+x+x+1=x^{2}+2 x+1$
(b) $(x+2)^{2}=(x+2)(x+2)=x^{2}+2 x+2 x+4=x^{2}+4 x+4$
(c) $(x+3)^{2}=(x+3)(x+3)=x^{2}+3 x+3 x+9=x^{2}+6 x+9$

In general, we see that $(x+y)^{2}=x^{2}+2 x y+y^{2}$ for any real numbers $x$ and $y$.
3. Using the above generalization, we have $(x+y)^{2}=x^{2}+2 x y+y^{2}=x^{2}+14 x+$ $\qquad$ . It follows that $2 x y=14 x$, and $y=14 x / 2 x=7$. The value that completes the square is $y^{2}=7^{2}=49$.
4. We are asked to expand $(a+b+c)^{2}$. We have $(a+b+c)^{2}=(a+b+c)(a+b+c)$. Using the distributive property, we get $a(a+b+c)+b(a+b+c)+c(a+b+c)=$ $a^{2}+a b+a c+a b+b^{2}+b c+a c+b c+c^{2}=a^{2}+b^{2}+c^{2}+2(a b+a c+b c)$.

The Problem is solved in the MATHCOUNTS Mini.

## Follow-up Problems

5. We are told that $x+y=3$ and $x^{2}+y^{2}=6$, and then asked to find the value of $x y$. Squaring both sides of the first equation, we get $(x+y)^{2}=3^{2} \rightarrow x^{2}+2 x y+y^{2}=9 \rightarrow x^{2}+y^{2}+2 x y=9$. We can substitute 6 for $x^{2}+y^{2}$ to get $6+2 x y=9 \rightarrow 2 x y=3 \rightarrow x y=3 / 2$.
6. Let $x=20122011$, and let $y=20122009$. We are asked to evaluate the expression $20122011^{2}-2(20122011)(20122009)+20122009^{2}$, which can be rewritten as $x^{2}-2 x y+y^{2}$. Factoring, we see this is equivalent to $(x-y)^{2}$. So we have $(x-y)^{2}=(20122011-20122009)^{2}=$ $2^{2}=4$.
7. We are told that $a+(1 / a)=6$ and asked to determine the value of $a^{4}+\left(1 / a^{4}\right)$. Squaring the first equation yields $(a+(1 / a))^{2}=6^{2} \rightarrow a^{2}+2+\left(1 / a^{2}\right)=36 \rightarrow a^{2}+\left(1 / a^{2}\right)=34$. Now squaring each side of this equation, we get $\left(a^{2}+\left(1 / a^{2}\right)\right)^{2}=34^{2} \rightarrow a^{4}+2+\left(1 / a^{4}\right)=1156$. Therefore, $a^{4}+\left(1 / a^{4}\right)=1154$.
8. We are told that $x y z=45$ and $1 / x+1 / y+1 / z=1 / 5$. We can rewrite the left side of the second equation using a common denominator to get $(y z / x y z)+(x z / x y z)+(x y / x y z)=1 / 5 \rightarrow$ $(x y+x z+y z) / x y z=1 / 5$. But we know that $x y z=45$, so we have $(x y+x z+y z) / 45=1 / 5 \rightarrow$ $x y+x z+y z=9$. If the sum of the three products $x y, x z$ and $y z$ is 9 , then their mean is $9 / 3=3$.
