

Try these problems before watching the lesson.

1. If a and b are integers such that $a=b^{2}-3$, then what is the smallest possible value of a ?
2. Expand each of the following squares of binomials:
(a) $(x+1)^{2}$.
(b) $(x+2)^{2}$.
(c) $(x+3)^{2}$.
3. What number must we place in the blank below to make the resulting quadratic a square of a binomial:

$$
x^{2}+14 x+\ldots ?
$$

4. Expand the expression $(a+b+c)^{2}$.
scos The Problem

First Problem: Given the funciton $y=x^{2}+10 x+21$, what is the least possible value of y ?

Second Problem: Suppose x and y are real numbers such that $x y=9$ and

$$
x^{2} y+x y^{2}+x+y=100
$$

What is the integer value of $x^{2}+y^{2}$?
Third Problem: If $x+y+z=7$ and $x^{2}+y^{2}+z^{2}=19$, then what is the arithmetic mean of the three products $x y, y z$, and $x z$?

5. If $x+y=3$ and $x^{2}+y^{2}=6$, then what is $x y$?
6. Compute $20122011^{2}-2(20122011)(20122009)+20122009^{2}$.
7. Suppose that $a+\frac{1}{a}=6$. What is $a^{4}+\frac{1}{a^{4}}$?
8. If $x y z=45$ and $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{5}$, then what is the arithmetic mean of the three products $x y, y z$, and $z x$?

Have some thoughts about the video? Want to discuss the problems on the Activity Sheet? Visit the MATHCOUNTS Facebook page or the Art of Problem Solving Online Community (www.artofproblemsolving.com).

