MATHCOUNTS J Jlinis ${ }^{\circ}$ September 2011 Activity Solutions

Warm-Up!

1. If the result is 35 when you double the number and add seven, we will start by subtracting 7 from 35 to get 28 . So, our number is half of 28 , which is 14 . To solve algebraically, we first let n represent our unknown. Then we have $2 n+7=35$. Subtracting 7 from each side yields $2 n=$ 28 . Then we divide each side by 2 to get $n=14$.
2. We are told that $x=y+3$ and $y=z-5$, which can be rewritten as $y+5=z$. We are asked to determine the value of $z-x$. Substituting we get $(y+5)-(y+3)=y+5-y-3=5-3=\mathbf{2}$.
3. In the given expression, $x\left(\frac{2 y+3}{x}-\frac{2 y}{x}\right)$, notice that the expression in parentheses is being multiplied by x, which is the denominator of the two fractions. The x s cancel, $*\left(\frac{2 y+3}{*}-\frac{2 y}{*}\right)$, and the result is $2 y+3-2 y=3$.
4. We are told that the television costs $\$ 299$ and the older sibling will pay $\$ 45$ more than the younger sibling. That means that the other 299-45 = 254 dollars will be split equally between the two siblings. Therefore, the younger sibling will pay $254 \div 2=127$ dollars.
5. From the information given, we can write the following two equations, where x represents the weight of Tweedledee and y is the weight of Tweedledum: $x+2 y=361$ and $2 x+y=362$. Adding the two equations we get $3 x+3 y=723$. Dividing each side by 3 we see that the sum of their weights is $x+y=\mathbf{2 4 1}$ pounds.

The Problem is solved in the MATHCOUNTS Mini.

Follow-up Problems

6. If we let n represent the numerator and d represent the denominator then the fraction of which Terry is thinking can be written as n / d. From the second sentence we see that $(n+3) / d=1 \rightarrow d=n+3 \rightarrow n=d-3$. From the third sentence we see that $n /(d-7)=2 \rightarrow$ $n=2(d-7) \rightarrow n=2 d-14$. We can set these two expressions equal to each other to get $d-3=2 d-14 \rightarrow d=11$. That means $n=11-3=8$, and Terry's fraction is $8 / 11$.
7. This problem can be solved several ways. First let's solve it algebraically. We are told that Douglas' favorite number is a positive two-digit integer; let's call it AB where A is the tens digit and B is the units digit. That means that the value of his favorite number is $10 A+B$. Then a new number is created, $A B 7$, where A now is the hundreds digit, B now is the tens digit and 7 is the units digit. The value of the new number is $100 A+10 B+7$. Finally, we are told that the new number is 385 more than Douglas' favorite number. So we have 100A + 10B $+7=10 A+B+385$. Subtracting 10A, B and 7 from both sides yields $90 A+9 B=378$. Dividing both sides by 9 gives us $10 A+B=42$. This is Doug's favorite number.

We could also have solved the problem logically by setting up the vertical addition problem:

385

$+\quad \mathrm{AB}$
A B 7

Notice that $5+B=7$, so B must equal 2 . We can then substitute 2 for B in the problem to get:

$$
\begin{array}{r}
385 \\
+\quad A 2 \\
\hline A 27
\end{array}
$$

The only integer from 1 to 9 that yields a units digit of 2 when added to 8 is 4 . It follows that:

$$
\begin{array}{r}
385 \\
+\quad 42 \\
\hline 427
\end{array}
$$

Thus, Douglas' favorite number is 42.
8. Let p represent the number of pit bulls, c is the number of chihuahuas and m is the number of mutts. The second sentence of the problem yields the following equations, where A is the total number of dogs: $p=A-23, c=A-17, m=A-28$ and $A=p+c+m$. If we add the first three equations we get $p+c+m=3 A-68$. Substituting, we get $A=3 A-68$. We now solve to determine that the total number of dogs at the pound is $2 A=68 \rightarrow A=34$ dogs.
9. If we add the four equations given, the result is $3 r+3 y+3 b+3 g=195$. We can divide both sides of the equation by 3 to get $r+y+b+g=65$. We can now calculate that there are $r=65-45=\mathbf{2 0}$ red marbles. Likewise, there are $y=65-45=\mathbf{2 0}$ yellow marbles and $b=65-45=\mathbf{2 0}$ blue marbles. There are $g=65-60=5$ green marbles.

