Warm-Up!

1. Since $BA:AC = 3:2$, it follows that $AC = \frac{2}{3}BC$. Therefore, $AC = \frac{2}{3} \times 45 = 30$.

2. Since $AD = 5$ units and $AB = BC = 2AD$, it follows that $AB = BC = 2(5) = 10$ units. If we draw segment DE, parallel to side AB and intersecting segment BC at point E, as shown, rectangle $ABED$ is formed with side lengths $AD = BE = 5$ units and $AB = DE = 10$ units, and with area is $10 \times 5 = 50$ units2. So, right triangle DEC, with leg lengths $DE = 10$ units and $CE = 10 - 5 = 5$ units, has area $(1/2) \times 10 \times 5 = 25$ units2. The total area of trapezoid $ABCD$, then, is $50 + 25 = 75$ units2.

3. Since segments MN and OP are parallel, we can conclude that $\triangle MNQ \sim \triangle POQ$ (Angle-Angle). Therefore, the ratios of corresponding sides of the triangles are congruent. Since $ON = 24$ units, it follows that $OQ = 24 - NQ$. We can set up the following proportion: $NQ/(24 - NQ) = 12/20$. Cross-multiplying and solving for NQ, we get $20(NQ) = 12(24 - NQ) \rightarrow 20(NQ) = 288 - 12(NQ) \rightarrow 32(NQ) = 288 \rightarrow NQ = 9$ units.

4. A segment drawn connecting A with E, as shown, creates a right triangle ADE and trapezoid $ABCE$. Triangle ADE has legs of length 10 units and 2 units, making its area $(1/2) \times 10 \times 2 = 10$ units2. The area of trapezoid $ABCE$ is difference between the area rectangle $ABCD$ and the area of triangle ADE. Rectangle $ABCD$ has area $10 \times 6 = 60$ units2. So, the area of trapezoid $ABCE$ is $60 - 10 = 50$ units2. The ratio of the area of triangle ADE to the area of trapezoid $ABCE$, then, is $10/50 = 1/5$.

The Problems are solved in the MATHCOUNTS$^\text{M}in\text{s}$ video.

Follow-up Problems

5. We are asked to determine the area of the shaded quadrilateral, which happens to be a trapezoid. The height of the trapezoid is 4, the side length of the middle square. Notice that triangles MNO, MPR and MST, shown in the figure, are similar right triangles. The base NO of the trapezoid is the shorter leg of $\triangle MNO$ and the base PR is the shorter leg of $\triangle MPR$. Triangle MST has a shorter leg of length $ST = 6$ and a longer leg of length $MS = 2 + 4 + 6 = 12$.

The ratio of the lengths of the shorter leg to the longer leg is $1:2$. The longer leg of $\triangle MPR$ has length $MP = 2 + 4 = 6$, so its shorter leg must have length $PR = 1/2 \times 6 = 3$. The longer leg of $\triangle MNO$ has length $MN = 2$, so its shorter leg must have length $NO = 1/2 \times 2 = 1$. Therefore, the trapezoid has area $1/2 \times (1 + 3) \times 4 = 8$ units2.

© 2018 MATHCOUNTS Foundation. All rights reserved. MATHCOUNTS Mini Solution Set
6. Since $2(0) - 4 = -4$, it follows that $y = 2x - 4$ intersects the y-axis at $A(0, -4)$. Similarly, since $-3(0) + 16 = 16$, it follows that $y = -3x + 16$ intersects the y-axis at $B(0, 16)$. These two lines intersect each other when $2x - 4 = -3x + 16 \rightarrow x = 4$ and $y = 2(4) - 4 = 8 - 4 = 4$, which we'll label $C(4, 4)$. As the figure shows, the interior region formed by $y = 2x - 4$, $y = -3x + 16$ and the y-axis is $\triangle ABC$. The dashed segments show the extension of $y = -3x + 16$ beyond point C and a portion of the horizontal line $y = -4$. The intersection of these dashed segments occurs when $-4 = -3x + 16 \rightarrow 3x = 20 \rightarrow x = \frac{20}{3}$, at a point we'll label $D\left(\frac{20}{3}, -4\right)$. As the figure shows, the area of $\triangle ABD$ minus $\triangle ACD$. Triangles ABD and ACD both have base length $AD = \left|\frac{20}{3} - 0\right| = \frac{20}{3}$ units. Right triangle ABD has height $|16 - (-4)| = 20$ units, and $\triangle ACD$ has height $|4 - (-4)| = 8$ units. So, $\triangle ABC$ has area $(1/2)(\frac{20}{3})(20) - (1/2)(\frac{20}{3})(8) = \left(\frac{10}{3}\right)(20 - 8) = \left(\frac{10}{3}\right)(12) = (10)(4) = 40$ units2.

7. Triangle BCD is a 30-60-90 right triangle with a shorter leg of length 6. Based on properties of 30-60-90 right triangles, segment BC, the longer leg, has length $6\sqrt{3}$. Since M is the midpoint of segment AD, $MD = 6\sqrt{3}/2 = 3\sqrt{3}$. For right triangle CDM, we know $CD = 6$ and $DM = 3\sqrt{3}$, so we can use the Pythagorean Theorem to determine CM. We have $CM^2 = 6^2 + (3\sqrt{3})^2 \rightarrow CM = \sqrt{36 + 27} \rightarrow CM = \sqrt{(63)} \rightarrow CM = 3\sqrt{7}$. If $m\angle DBC = 30^\circ$, then $m\angle BDA = 30^\circ$ because they are alternate interior angles. Also $m\angle CKB = m\angle MKD$ since they are vertical angles. That means $\triangle CKB \sim \triangle MKD$, and $BC/DM = CK/MK$. Substituting and simplifying BC/DM, we have $2/1 = CK/MK$, which means $MK = \frac{1}{2}CM \rightarrow MK = \frac{1}{2} \times 3\sqrt{7} \rightarrow MK = \sqrt{7}$.

8. From the figure, we can see that the area of $\triangle ACD$ is the sum of the areas of $\triangle ABE$ and trapezoid $BCDE$. Also, we are told that the area of trapezoid $BCDE$ is 8 times the area of $\triangle ABE$. It follows that the area of $\triangle ACD$ is 9 times the area of $\triangle ABE$. That means the ratio of sides BE and CD is $\sqrt{1/9} = 1/3$. Since segments BE and CD are also sides of triangles EBX and CDX, respectively, it follows that the ratio of the areas of $\triangle EBX$ and $\triangle CDX$ is $1^2/3^2 = 1/9$. The problem states that the area of $\triangle CDX$ is 27 units2, so the area of $\triangle EBX$ is $(1/9) \times 27 = 3$ units2. Using the method from the video, we can determine the areas of $\triangle BCX$ and $\triangle DEX$ by multiplying $\sqrt{3} \times \sqrt{27} = \sqrt{81} = 9$. Therefore, $\triangle BCX$ and $\triangle DEX$ each have an area of 9 units2. We now can calculate the area of trapezoid $BCDE$ to be $3 + 27 + 9 + 9 = 48$ units2. Using Harvey’s trick results in the same answer since $(\sqrt{3} + \sqrt{27})^2 = (\sqrt{3} + 3\sqrt{3})^2 = (4\sqrt{3})^2 = 48$ units2. So the area of $\triangle ABE$ is $(1/8) \times 48 = 6$ units2. Thus, the area of $\triangle ACD$ is $48 + 6 = 54$ units2. This also confirms our assertion that the area of $\triangle ACD$ is 9 times the area of $\triangle ABE$ since $9 \times 6 = 54$ units2.

© 2018 MATHCOUNTS Foundation. All rights reserved. MATHCOUNTS Mini Solution Set