MATHCOUNTS $)$)

October 2013 Activity Solutions

Warm-Up!

1. Using the F.O.I.L. method to multiply the binomials, we get $(x+2)(x-7)=x^{2}+2 x-7 x-14$. Once we combine like terms, our answer is $\boldsymbol{x}^{2} \mathbf{- 5 x} \mathbf{- 1 4}$.
2. Again, using the F.O.I.L method, we get $24-3 y-8 y+y^{2}$. We then combine like terms to get the result $y^{2}-11 y+24$.
3. By factoring the polynomial we can determine for what values of r it is true that $r^{2}+3 r-70=0$. Factoring the trinomial, the equation can be rewritten as $(r+10)(r-7)=0 \rightarrow r+10=0$ or $r-7=0$. Solving these two equations, we get the real roots $r=\mathbf{- 1 0}$ and $r=7$.
4. Let's use the same approach we used in the previous problem. Factoring the trinomial, $x^{2}-13 x+40=0$ can be rewritten as $(x-5)(x-8)=0 \rightarrow x-5=0$ or $x-8=0$. Solving these two equations, we get the real roots $x=5$ and $x=8$. Thus, their sum is $5+8=13$.

The Problem is solved in the video.

Follow-up Problems

5. As the activity sheet states, this problem appears to be similar to the problem solved in the video, but this quadratic equation has a leading coefficient of 2 , not 1 . We are told that $2 x^{2}+b x+c=0$ when $x=4$ or $x=-6$, so we can write $(x-4)(x+6)=0$. Expanding the left-hand side of the equation yields $x^{2}+6 x-4 x-24=0 \rightarrow x^{2}+2 x-24=0$. Since the quadratic equation we were given has a leading coefficient of 2 , we need an equivalent expression in the form $2 x^{2}+b x+c=0$. Multiplying both sides of the equation by 2 yields $2\left(x^{2}+2 x-24\right)$ $=2(0) \rightarrow 2 x^{2}+4 x-48=0$. By inspection, we see that $b=4$ and $c=-48$. Therefore, $b+c=$ $4+(-48)=-44$.

Another approach to solve this problem would be to divide each side of the equation $2 x^{2}+b x+c=0$ by 2 to get an equivalent equation in which the trinomial has a leading coefficient of 1 . That gives us $x^{2}+(b / 2) x+c / 2=0$. Again, since $x=4$ and $x=-6$ are solutions, we can write $(x-4)(x+6)=0 \rightarrow x^{2}+2 x-24=0$. Now, by inspection, we see that $b / 2=2 \rightarrow b=4$, and $c / 2$ $=-24 \rightarrow c=-48$. Again, $b+c=4-48=-44$.
6. We are told that $x=2$ is a solution to $x^{2}+b x+24=0$. That means that $x-2$ is a factor of $x^{2}+6 x+24$. We also know that the constants in the two binomial factors must have a product of 24. Since $24 \div(-2)=-12$, the other binomial factor must be $x-12$, and it follows that $x=12$ is the other root.
7. Using a method similar to the method employed in the video, we can simplify this equation using substitution. Let's rewrite the equation $\sqrt[3]{x^{2}}-3 \sqrt[3]{x}=28$ so that the right-hand side equals 0 . We have $\sqrt[3]{x^{2}}-3 \sqrt[3]{x}-28=0$. Recall the property of exponents that states that $\left(x^{a}\right)^{b}=\left(x^{b}\right)^{a}$. So, $\sqrt[3]{x^{2}}=(\sqrt[3]{x})^{2}$. Now let $y=\sqrt[3]{x}$, and we can rewrite the equation as $y^{2}-3 y-28=0$. Factoring, we get $(y-7)(y+4)=0$, and $y-7=0$ or $y+4=0$. So, we have roots $y=7$, and $y=-4$. Therefore, the values of x that make the given equation true are $7^{3}=343$ and $(-4)^{3}=-64$.
8. We start by subtracting $11 t^{2}$ from both sides of the equation so that the right-hand side of the equation equals zero. We end up with $t^{4}-11 t^{2}+18=0$. Now we can simplify the problem using substitution. If we let $x=t^{2}$, then we can rewrite the equation as $x^{2}-11 x+18=0$. Factoring, we see that $(x-9)(x-2)=0 \rightarrow x-9=0$ or $x-2=0$. Thus, $x=9$ and $x=2$ are roots of this quadratic equation. To determine the roots of the original fourth degree polynomial equation, we substitute 9 and 2 for x in the equation $x=t^{2}$. We have $9=t^{2} \rightarrow t= \pm 3$ and $2=t^{2} \rightarrow t=\mathbf{\pm} \sqrt{ } \mathbf{2}$.
9. First, we rewrite the equation $4^{x}=33 \cdot 2^{x-1}-8$ as $4^{x}-33 \cdot 2^{x-1}+8=0$. Since $4=2^{2}$, it follows that $4^{x}=\left(2^{2}\right)^{x}=\left(2^{x}\right)^{2}$. Also, since $2^{x-1}=2^{x} \cdot 2^{-1}=2^{x} \cdot(1 / 2)$, we can write $\left(2^{x}\right)^{2}-33 \cdot 2^{x} \cdot(1 / 2)+8=0 \rightarrow\left(2^{x}\right)^{2}-2^{x} \cdot(33 / 2)+8=0$. Now we can let $y=2^{x}$, and rewrite the equation as $y^{2}-(33 / 2) y+8=0$. To eliminate the fraction, we can multiply each side of the equation by 2 , to get $2 y^{2}-33 y+16=0$. Factoring the trinomial, we get $(2 y-1)(y-16)=0$. So, $2 y-1=0 \rightarrow 2 y=1 \rightarrow y=1 / 2$, and $y-16=0 \rightarrow y=16$ are solutions to this quadratic equation. To solve the original equation, we substitute $1 / 2$ and 16 for y in the equation $y=2^{x}$. We have $1 / 2=2^{x} \rightarrow 2^{-1}=2^{x} \rightarrow x=-1$, and $16=2^{x} \rightarrow 2^{4}=2^{x} \rightarrow x=4$.
10. Consider a quadratic equation of the form $a x^{2}+b x+c=0$. We'll factor the given quadratic expressions to see if we can establish a rule to determine the product and sum of the roots of a quadratic equation without solving to find the roots.
(a) $x^{2}+2 x-35=0$

In this case, $a=1, b=2$ and $c=-35$. Factoring, we get $(x+7)(x-5)=0$, and it follows that the roots are $x=-7$ and $x=5$. The product of the roots is $(-7)(5)=-35$. The sum of the roots is $-7+5=-2$. It looks like the product of the roots is the same as c, and the sum of roots is $-b$. Perhaps the remainder of the quadratics will help us see if, and how, a relates to the product and sum of the roots.
(b) $2 x^{2}-5 x-3=0$

In this case, $a=2, b=-5$ and $c=-3$. Factoring, we get $(2 x+1)(x-3)=0$, and it follows that the roots are $x=-1 / 2$ and $x=3$. The product of the roots is $(-1 / 2)(3)=-3 / 2$. The sum of the roots is $(-1 / 2)+3=5 / 2$. It looks like the product of the roots is the same as c/a, and the sum of roots is $-b / a$.
(c) $2 x^{2}+4 x-70=0$

In this case, $a=2, b=4$ and $c=-70$. Notice that the coefficients of this quadratic equation are twice the coefficients of the equation in (a). Factoring, we get $(2 x+14)(x-5)=0$, and it follows that the roots are $x=-7$ and $x=5$. The product of the roots is $(-7)(5)=-35$. The sum of the roots is $-7+5=-2$. It looks like the product of the roots is the same as c/a, and the sum of roots is $-b / a$.
(d) $12 x^{2}-11 x+2=0$

In this case, $a=12, b=-11$ and $c=2$. Factoring, we get $(4 x-1)(3 x-2)=0$, and it follows that the roots are $x=1 / 4$ and $x=2 / 3$. The product of the roots is $(1 / 4)(2 / 3)=1 / 6$. The sum of the roots is $1 / 4+2 / 3=11 / 12$. It looks like the product of the roots is the same as c/a, and the sum of roots is $-b / a$.

Examples (b), (c) and (d) establish a pattern. Looking back at (a), we see that the product of the roots is, in fact, the same as c/a, and the sum of the roots is the same as -b/a.

