## MATHCOUNTS ${ }^{\circ}$ ) $\$ (inn요

## Warm-Up!

1. Five ordered pairs that satisfy this equation are $(0,1),(2,-1),(-1,1 / 2),(3,-1 / 2)$ and $(-1 / 2$, $2 / 3$ ). (Student answers may differ, as there are an infinite number of possible ordered pairs.)
2. The only ordered pairs of integers that satisfy this equation are $(0,1)$ and $(2,-1)$.

The Problems are solved in the MATHCOUNTS $]$ [型nㅍI video.

## Follow-up Problems

3. Multiply the two equations together to get:

$$
\begin{aligned}
& \left(x+\frac{1}{y}\right)\left(y+\frac{1}{z}\right)=1 \\
& x y+\frac{x}{z}+1+\frac{1}{y z}=1
\end{aligned}
$$

Subtracting 1 from both sides of this new equation gives:

$$
x y+\frac{x}{z}+\frac{1}{y z}=0
$$

Multiply the above equation by $z$ to get:

$$
x y z+\left(x+\frac{1}{y}\right)=0
$$

We are given that $x+\frac{1}{y}=2$, so $x y z+2=0$. Therefore, $x y z=\mathbf{- 2}$.
4. Just as $(1 / 2) \times 2=1$ on the right side of the equation in Problem $3,(1 / 3) \times 3=1$ as well. Therefore, multiplying these two equations together and following the same process as in Problem 3 will result in the product, $x y z=\mathbf{- 3}$.
5. As in Problems 3 and $4,(1 / 4) \times 4=1$, so multiplying these two equations together and following the same process will result in the product, $x y z=\mathbf{- 4}$.
6. Problems 3,4 and 5 all produce answers that are the opposite of the given value of $x+\frac{1}{y}$. When multiplying the two provided equations together, as long as the product on the right side of the new equation is 1 , then the pattern will continue.
7. Multiply the two equations together to get:

$$
\begin{aligned}
& \left(x+\frac{1}{y}\right)\left(y+\frac{1}{z}\right)=2 \\
& x y+\frac{x}{z}+1+\frac{1}{y z}=2
\end{aligned}
$$

Subtracting 1 from both sides of this new equation gives:

$$
x y+\frac{x}{z}+\frac{1}{y z}=1
$$

Multiply the above equation by $z$ to get:

$$
x y z+\left(x+\frac{1}{y}\right)=z
$$

We are given that $x+\frac{1}{y}=2$, so $x y z+2=z$. Subtracting 2 from both sides of the equation gives $x y z$ $=z-2$, whose value changes with $z$. Thus, $x y z$ does not have just one possible value.
8. We can rewrite $y+\frac{1}{z}=1$ as $y=1-\frac{1}{z}$ by subtracting $\frac{1}{z}$ from both sides of the equation. So:

$$
x+\frac{1}{y}=x+\frac{1}{1-\frac{1}{z}}=x+\frac{z}{z-1}=1
$$

Subtracting $x$ from both sides of the equation, then multiplying both sides by $z-1$ gives:

$$
\begin{aligned}
& \frac{z}{z-1}=1-x \\
& z=(1-x)(z-1) \\
& z=z-1-x z+x
\end{aligned}
$$

Subtract $z$ and $x$ from both sides of the equation, then add 1 to both sides to get $x z=x-1$. Finally, divide both sides of the equation by $x$ :

$$
\begin{aligned}
& z=\frac{x-1}{x}=1-\frac{1}{x} \\
& z+\frac{1}{x}=1
\end{aligned}
$$

Therefore, yes, $z+\frac{1}{x}$ must also equal 1 .

