DSEC
MATHCOUNTS ${ }^{\circ}$

This practice plan was created by Tyler Erb, a math teacher and coach at Community House Middle School. Tyler created numerous free resources for MATHCOUNTS coaches in his role as the 2021-2022 DoD STEM Ambassador for MATHCOUNTS. Find more resources and information at dodstem.us.

## Mass Points

Try these problems before watching the lesson.

1. Triangle $A B C$ has medians $A E$ and $B F$. The point that they intersect is point $G$. What is the ratio of the length $B G$ to $B F$ ? Express your answer as a common fraction.
2. $C D$ is 3 times as long as $B D$. If the area of triangle $A B C$ is $28 \mathrm{~m}^{2}$, what is the area of triangle ABD?

3. 



CD:DB is a 7 to 3 ratio. The area of triangle AFC is 40 in $^{2}$; the area of triangle FEA is $10 \mathrm{in}^{2}$; and the area of triangle DFC is $20 \mathrm{in}^{2}$. What is the area of quadrilateral FEBD? Express your answer as a common fraction.
4. In triangle $A B C$, there is a point $D$ on segment $A B$ so that $A D: D B=2: 5$. $E$ is on segment $C B$ such that $C E: E B=2: 3$. The point where $A E$ and $C D$ intersect is point $F$. What is the ratio of $A F$ to $F E$ ?


Take a look at the following problems and follow along as they are explained in the video.
5. Point E splits segment DA into a 2 to 3 ratio between DE and EA. AB:BC = 3:5. What is the ratio of DF to FB? Express your answer as a common fraction.

6. Find $\frac{C E}{D E}$ if $\frac{D F}{B F}=5$ and $\frac{A F}{E F}=6$. Express your answer as a common fraction.
7.


The area of triangle BEF is 12 ; the area of triangle FBC is 18 ; and the area of triangle FDC is 9 , as shown in the figure. What is the area of quadrilateral EADF? Express your answer as a decimal to the nearest tenth.
8. As shown in the figure, $D$ and $E$ are points on $B C$ of triangle $A B C$ such that $B D: D E: E C=1: 2: 3$. The median $B F$ meets $A D$ and $A E$ at $G$ and $H$, respective$l y$, and is divided into lengths $x, y$ and $z$. Assuming $x, y$ and $z$ are the smallest possible integers, find $x+y+z$.

9. Point D splits segment AC such that $\frac{A D}{D C}=\frac{3}{2}$. F is the midpoint of segment AB . $\frac{B E}{E C}=\frac{3}{5}$. What is $\frac{D G}{G E}$ ? Express your answer as a common fraction.


## HPBiece It Together

Use the skills you practiced in the warm-up and strategies from the video to solve the following problems.
10. In triangle $A B C, D$ is the midpoint of $B C$. $E$ splits segment $A C$ such that $A E: E C=4: 7$. The point where $B E$ and $A D$ intersect is point $F$. What is the ratio of $A F$ to $A D$ ? Express your answer as a common fraction.
11. In triangle GCM, point $P$ lies on segment $G C$; point $R$ lies on segment $C M$; and point $T$ lies on segment MG. GP is twice as long as PC, and MR is $1 / 3$ the length of RC. The point where median TC and segment PR intersect is point A. What is CA:AT? Express your answer as a common fraction.
12. $M$ is the midpoint of $B C, A B=14$, and $A C=16$. Segment $A M$ and $E F$ intersect at $G$. If $A E=3 A F$, then what is $E G / G F$ ? Express your answer as a common fraction.
13.


In the diagram, $\mathrm{AM}: \mathrm{MH}: \mathrm{HF}=5: 3: 1$. We also know GM:MK:KB = 6:2:1. What is FE:ED? Express your answer as a common fraction.
14. Using the diagram, the area of triangle CTS is $21 \mathrm{in}^{2}$, while the area of triangle STR is $14 \mathrm{in}^{2}$. The area of triangle CPT is $12 \mathrm{in}^{2}$. What is the area of quadrilateral PMRT? Express your answer as a common fraction.


To extend your understanding and have a little fun with math, try the following activity.
You have applied mass points to triangles, but what would it look like in a quadrilateral? In many geometry problems, we may need to add segments to make our drawing easier to interpret or to use properties of figures that we know. As always, we may use mass points here because the problem gives us ratios of side lengths. Can you figure out what to add to the figure to make it solvable?
$A B C D$ is a rectangle with an area of $96 \mathrm{in}^{2}$. $Q$ lies on $A B$ such that $A Q: Q B=1: 5$, and $P$ lies on $C D$ such that $C P: P D=1: 3 . S$ is the midpoint of $B C . M$ is the intersection of $A S$ and $Q P$. $A B$ is 12 inches, and $A D$ is 8 inches. Find the area of quadrilateral MSCP. Express your answer as a common fraction.


