

Try these problems before watching the lesson.

1. A point is selected at random from the interval $-10 \leq x \leq 10$. What is the probability that the coordinate of the point is a solution of $x \geq 7$? Express your answer as a common fraction.
2. A point is selected at random from the portion of the number line shown here. What is the probability that the point is closer to 4 than to 0 ? Express your answer as a decimal to the nearest tenth.
```
0
```

3. Points A, B, C, and D are located on $\overline{A B}$ such that $A B=3 A D=6 B C$. If a point is selected at random on $\overline{A B}$, what is the probability that it is between C and D ? Express your answer as a common fraction.

4. Suppose $\overline{A B}, \overline{A C}$, and $\overline{A D}$ are edges of a cube that has side length 6 cm . What is the volume of tetrahedron $A B C D$?
scics The Tpololem.

What is the probability that three randomly drawn real numbers between 0 and 1 have a sum less than 1? Express your answer as a common fraction. www.artofproblemsolving.com

5. A point (x, y) is randomly selected such that $0 \leq x \leq 8$ and $0 \leq y \leq 4$. What is the probability that $x+y \leq 4$? Express your answer as a common fraction.
6. Given that a and b are real numbers such that $-3 \leq a \leq 1$ and $-2 \leq b \leq 4$, and values for a and b are chosen at random, what is the probability that the product $a \cdot b$ is positive? Express your answer as a common fraction.
7. Two numbers between 0 and 1 on a number line are to be chosen at random. What is the probability that the second number chosen will exceed the first number chosen by a distance greater than $\frac{1}{4}$ unit on the number line? Express your answer as a common fraction.
8. A point E is chosen at random from within the square $A B C D$. Express as a decimal to the nearest hundredth the probability that $\triangle A B E$ is obtuse.

Have some thoughts about the video? Want to discuss the problems on the Activity Sheet? Visit the MATHCOUNTS Facebook page or the Art of Problem Solving Online Community (www.artofproblemsolving.com).

