MATHCOUNTS*
 Difference of Squares

Try these problems before watching the lesson.

1. What is the value of $5^{2}-4^{2}$?
2. What is the value of $12^{2}-8^{2}$?
3. What is the value of $23^{2}-13^{2}$?
4. If a square of side length 4 units is placed on top of a square of side length 6 units, what is the area of the non-overlapping region?

Take a look at the following problems and follow along as they are explained in the video.
5. What is the value of $4^{2}-3^{2}$?
6. What is the value of $212^{2}-211^{2}$?

Use the skills you practiced in the warm-up and strategies from the video to solve the following problems.
7. What is the value of $2115^{2}-2114^{2}$?
8. If $x ® y$ is defined as $x^{2}-y^{2}$, what is the value of $65 ®(8 ® 3)$?
9. What is the value of $\left(12^{2}-11^{2}\right)^{2}$?
10. What is the value of $4^{4}-3^{4}$?
11. What is the value of $25^{2}-(25-5)(25+5)$?
12. What is the value of the expression $\frac{20^{2}-1}{19}$?

To extend your understanding and have a little fun with math, try the following activities.

Option 1

See if you can apply the difference of squares formula to find a quicker solution (hint: you don't have to solve for the unknown) to the following algebra problems:

If $2 x+3=1000$, what is the value of $4 x^{2}-9$?

If $a-2=1$, then what is the value of $a^{4}-4 a^{2}$?

If $x-y=2$ and $x^{2}-y^{2}=(55)(59)-(53)(57)$, what is the value of $x+y$?

Option 2

Similar to difference of squares, there is an identity formula for a difference of cubes.

$$
a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)
$$

Using a geometric representation of difference of cubes, similar to the approach used to derive the difference of squares formula in the video, prove the difference of cubes formula to be true.

