MATHCOUNTS ${ }^{\circ}$ Problem of the Week Archive
 Math Club Meetings - September 4, 2023

Problems \& Solutions

Ms. Cross leads The National Math Club at the middle school where she teaches. At the first club meeting of the school year, 60% of the students in attendance were $7^{\text {th }}$ graders. If there was one fewer $8^{\text {th }}$ grader than $7^{\text {th }}$ grader in attendance, how many students attended the first club meeting?

Let a and b represent the number of $7^{\text {th }}$ graders and $8^{\text {th }}$ graders who attended the first club meeting, respectively. We know that $a=b+1$ and $a=0.6(a+b)$. Solving for a in the second equation yields $a=$ $0.6 a+0.6 b \rightarrow 0.4 a=0.6 b \rightarrow a=1.5 b$. Substituting this value for a in the first equation, we get $1.5 b=b+$ $1 \rightarrow 0.5 b=1 \rightarrow b=2$. So, there were $28^{\text {th }}$ graders and $2+1=37^{\text {th }}$ graders in attendance at the first club meeting. Therefore, a total of $2+3=5$ students attended the first club meeting.

At the second club meeting of the school year, Ms. Cross noticed that among the students in attendance, there were equal numbers of $7^{\text {th }}$ graders and $8^{\text {th }}$ graders. Ms. Cross also noticed that all the students from the first club meeting were in attendance, along with some new students who weren't at the first club meeting. If twice as many new $8^{\text {th }}$ graders attended the second club meeting as new $7^{\text {th }}$ graders, how many new students attended the second club meeting?

From the previous problem, we know that there were $37^{\text {th }}$ graders and $28^{\text {th }}$ graders in attendance at the first club meeting. It follows, then, from the information given, that if x new $7^{\text {th }}$ graders attended the second club meeting, $2 x$ new $8^{\text {th }}$ graders attended that meeting. Since the same number of $8^{\text {th }}$ graders and $7^{\text {th }}$ graders attended the second meeting, we can write $3+x=2+2 x$ and solve to get $x=1$. That means 1 new $7^{\text {th }}$ grader and $2 \times 1=2$ new $8^{\text {th }}$ graders attended the second meeting. Therefore, a total of $1+2$ = 3 new students attended the second meeting.

At the third meeting of The National Math Club, Ms. Cross noticed that 60\% of the students in attendance were $8^{\text {th }}$ graders and that the total number of students in attendance was double that of the first club meeting. Ms. Cross was pleased to see that all the students who attended the second club meeting also attended the third club meeting. Of the students in attendance at the third club meeting who did not attend the first two club meetings, what is the absolute difference between the number of $8^{\text {th }}$ graders and the number of $7^{\text {th }}$ graders?

From the first problem, we know that a total of 5 students attended the first club meeting. Based on the information provided, twice that number, or $5 \times 2=10$ students attended the third club meeting. Since $8^{\text {th }}$ graders accounted for 60% of these 10 students, it follows that $0.6 \times 10=68^{\text {th }}$ graders and $10-6=4$ $7^{\text {th }}$ graders attended the third club meeting. Since $47^{\text {th }}$ graders and $48^{\text {th }}$ graders attended the second club meeting, there were 4-4 = 0 new $7^{\text {th }}$ graders and 6-4 $=2$ new $8^{\text {th }}$ graders at the third club meeting. The absolute difference between these two quantities is $2 \mathbf{- 0}=\mathbf{2}$.

MATHCOUNTS ${ }^{\text { }}$ Problem of the Week Archive

Math Club Meetings - September 4, 2023

Problems

Ms. Cross leads The National Math Club at the middle school where she teaches. At the first club meeting of the school year, 60% of the students in attendance were $7^{\text {th }}$ graders. If there was one fewer $8^{\text {th }}$ grader than $7^{\text {th }}$ grader in attendance, how many students attended the first club meeting?

At the second club meeting of the school year, Ms. Cross noticed that among the students in attendance, there were equal numbers of $7^{\text {th }}$ graders and $8^{\text {th }}$ graders. Ms. Cross also noticed that all the students from the first club meeting were in attendance, along with some new students who weren't at the first club meeting. If twice as many new $8^{\text {th }}$ graders attended the second club meeting as new $7^{\text {th }}$ graders, how many new students attended the second club meeting?

At the third meeting of The National Math Club, Ms. Cross noticed that 60% of the students in attendance were $8^{\text {th }}$ graders and that the total number of students in attendance was double that of the first club meeting. Ms. Cross was pleased to see that all the students who attended the second club meeting also attended the third club meeting. Of the students in attendance at the third club meeting who did not attend the first two club meetings, what is the absolute difference between the number of $8^{\text {th }}$ graders and the number of $7^{\text {th }}$ graders?

