

Catalina has 30 mL of yellowgen, of which 6%, or $(0.06)(30)=1.8 \mathrm{~mL}$ is acid. To that she adds $p \mathrm{~mL}$ of purploxide, of which 16%, or $0.16 p \mathrm{~mL}$ is acid. The resulting yellowgen and purploxide solution has a total volume, in milliliters, of $30+p$. We are told that 12%, or $(0.12)(30+p)=3.6+0.12 p \mathrm{~mL}$ of this mixure is acid. Since the 1.8 mL of acid from the yellowgen and the $0.16 p \mathrm{~mL}$ of acid from the purploxide combined make up the $3.6+0.12 p \mathrm{~mL}$ of acid in the mixture, we have the equation $1.8+0.16 p=3.6+0.12 p$. Solving for p, we get $0.04 p=1.8$, meaning the volume of purploxide that Catalina adds is $p=45 \mathrm{~mL}$, and the volume of the resulting solution is $30+p=30+45=\mathbf{7 5} \mathrm{mL}$.

