

Activity Sheet for the May, 2011, MATHCOUNTS Mini

Warn-Up!

Try these problems before watching the lesson.

1. A triangular corner region is sliced off from a rectangular region as shown on the right. What is the area of the pentagonal region ABEFD that remains? Source: MATHCOUNTS

2. ABCD is a square with side length 10. Point X is on side \overline{AB} such that AX = 2. A line through X and the center of the square intersects side \overline{CD} at point Y. Find DY and the area of AXYD.

3. In the diagram on the right, \overline{AB} and \overline{CD} are parallel, and lines \overline{AD} and \overline{BC} intersect at P. If AB=20, CD=8, and BC=14, then what is CP?

4. A median of a triangle is a segment that connects a vertex of the triangle to the midpoint of the opposite side. For example, in the diagram on the right, \overline{AM} is a median of $\triangle ABC$. Explain why a median of a triangle divides the triangle into two pieces with equal area.

5. Trapezoid PQRS has $\overline{PQ} \parallel \overline{RS}$. If PQ=3 and RS=9, and the area of the trapezoid is 24, then what is the area of $\triangle PQR$?

2 The Problem

First Problem: Three coplanar squares with sides of lengths two, four, and six units, respectively, are arranged side-by-side, as shown so that one side of each square lies on line AB and a segment connects the bottom left corner of the smallest square to the upper right corner of the largest square. What is the area of the shaded quadrilateral?

Second Problem: The vertices of a convex pentagon are (-1, -1), (-3, 4), (1, 7), (6, 5) and (3, -1). What is the area of the pentagon?

Third Problem: Trapezoid ABCD has base AB = 20 units and base CD = 30 units. Diagonals \overline{AC} and \overline{BD} intersect at X. If the area of trapezoid ABCD is 300 square units, what is the area of triangle BXC?

Follow-up Problems

6. In the figure on the right, AB=12 cm and BC=AD=8 cm. We also have $\overline{BC}\perp \overline{AB}$ and $\overline{DA}\perp \overline{AB}$. How many square centimeters are shaded?

7. Tina wants to carpet a room that has the unusual shape shown on the right with solid lines. Each dotted square in the diagram has side length 5 feet. What is the area of Tina's carpet?

8. Suppose point P is on side \overline{AB} of $\triangle ABC$ such that we have AP:PB=1:2. If the area of $\triangle CAP$ is 40 square units, then what is the area of $\triangle ABC$?

9. In quadrilateral WXYZ, sides \overline{WX} and \overline{YZ} are both perpendicular to \overline{XY} . If XY = WX + YZ = 8 units, then what are the possible values of the area of WXYZ?

10. Explain how Harvey's slick solution at the end of the video works.

Further Exploration

A segment from the vertex of a triangle to a point on the opposite side of the triangle is called a cevian. In the diagram at the right, \overline{AD} , \overline{BE} , and \overline{CF} are cevians of $\triangle ABC$. Ceva's Theorem says that cevians \overline{AD} , \overline{BE} , and \overline{CF} all pass through a common point if and only if

$$\frac{AF}{FB} \cdot \frac{BD}{DC} \cdot \frac{CE}{EA} = 1.$$

Using the following steps, we can prove part of this theorem. Namely, we can show that if the three cevians \overline{AD} , \overline{BE} , and \overline{CF} meet at a point P, then $\frac{AF}{FB} \cdot \frac{BD}{DC} \cdot \frac{CE}{EA} = 1$.

In all of the following parts, let \overline{AD} , \overline{BE} , and \overline{CF} meet at a point P.

11. Show that
$$\frac{\text{Area of }\triangle APF}{\text{Area of }\triangle BPF} = \frac{AF}{FB}$$
.

12. Show that
$$\frac{\text{Area of }\triangle ACF}{\text{Area of }\triangle BCF} = \frac{AF}{FB}$$
.

13. Show that
$$\frac{\text{Area of }\triangle ACP}{\text{Area of }\triangle BCP} = \frac{AF}{FB}$$
.

14. Show that
$$\frac{AF}{FB} \cdot \frac{BD}{DC} \cdot \frac{CE}{EA} = 1$$
.

Have some thoughts about the video? Want to discuss the problems on the Activity Sheet? Visit the MATHCOUNTS Facebook page or the Art of Problem Solving Online Community (www.artofproblemsolving.com).