April 2020 Activity Solutions

Warm-Up!

1. We are looking for the units digit when we multiply all the odd numbers from 1 to 2015 , inclusive. If we multiply $1 \times 3 \times 5 \times 7 \times 9$, and look only at the units digit, we see this product has a units digit of 5 . Because the same digits are multiplied, the product of the odd numbers from 11 to 19 will have a units digit of 5 , as will the product of the odd numbers from 21 to 29 and from 31 to 39 , and so on. Therefore we know $1 \times 3 \times 5 \times \cdots \times 2009$ will have a units digit of 5 , since 5 multiplied by itself, any number of times, will result in a units digit of 5 . The only numbers left to multiply, then, are 2011, 2013 and 2015. Multiplying these three numbers will give us the same units digit as multiplying $1 \times 3 \times 5$, which is 5 . The units digit for the product $1 \times 3 \times 5 \times \cdots \times 2015$, therefore, also will be 5 .
2. Figure 1 has 1 dot. Figure 2 has 3 dots, which is 2 more that the previous figure. Figure 3 has 6 dots, which is 3 more than the previous figure. Finally, Figure 4 has 10 dots, which is 4 more than the previous figure. Notice the pattern shown in this table. Therefore, Figure 10 has $1+2+3+4+5+6+7+8+9+10=\mathbf{5 5}$ dots. The numbers of dots in each figure form a sequence of numbers commonly referred to as the Triangular Numbers. There is a formula to determine the sum of the first n positive integers. It is $1+2+3+4+\cdots+n=n(n+1) / 2$.

FIGURE	DOTS
1	1
2	$1+2=3$
3	$1+2+3=6$
4	$1+2+3+4=10$
\vdots	\vdots
n	$1+2+3+4+\cdots+n$

3. To evaluate $(4-3)+(5-4)+(6-5)+(7-6)+\cdots+(2010-2009)$, we need to first evaluate the expression in each set of parentheses. The value of the expression in each of the $2010-4+1=$ 2007 sets of parentheses is 1 . So, the sum is $1 \times 2007=2007$.
4. There are three triples that add up to 6. Let's examine these three cases:

Case 1: The triple 2, 2 and 2 can be ordered in 1 way.
Case 2: The triple 1, 1 and 4 can be ordered in $3!/ 2=\underline{3}$ ways.
CASE 3: The triple 1, 2 and 3 can be ordered in $3!=\underline{6}$ ways.
These three cases yield a total of $1+3+6=\mathbf{1 0}$ ordered triples.

Follow-up Problems

5. Let's, first, try a few different combinations of positive odd integers x, y and z to see what the remainder is when the sum of their squares is divided by 4. The table shows four such scenarios. It appears that for all positive odd integers x, y and z, when the sum of their squares is divided by 4 , the remainder will always be 3 . Let's see if we can prove this algebraically. For nonnegative integers u, v and w, let $x=2 u+1, y=2 v+1$ and

x	y	z	$x^{2}+y^{2}+z^{2}$	$\frac{x^{2}+y^{2}+z^{2}}{4}$
1	1	1	3	0 R.3
1	1	3	11	2 R.3
1	3	3	19	4 R.3
1	3	5	35	8 R.3

6. When the dots are connected, triangles are created, as shown. Instead of looking at the line segments, let's look at the number of shaded triangles in each figure.

Figure 1

Figure 3

Figure 4

Figure 5

Figure 1 has no triangles. Figures 2, 3, 4 and 5 each have 1, 3, 6 and 10 shaded triangles, respectively. The sequence representing the number of shaded triangles in each figure is $0,1,3,6,10, \ldots$ Recall, that the sequence representing the number of dots in each figure is $1,3,6$, $10,15, \ldots$ Notice that these two sequences are the same, except the terms are one-off because the first term of the sequence representing the shaded triangles is 0 . It follows, then, that in Figure 10 there are $0+1+2+3+4+5+6+7+8+9=45$ shaded triangles. Each shaded triangle has a perimeter of 3 . That means the length of all the segments in Figure 10 is $45 \times 3=\mathbf{1 3 5}$ units.
7. To determine the number of distinct arithmetic sequences having 1 as the first term with 91 in the sequence, we first need to determine how far it is from 1 to 91 . Since $91-1=90$ and the sequence contains only integers, we need to determine the number of ways we can divide 90 into integral parts. In other words, what are the factors of 90 ? The factors of 90 are 1, 2, 3, 5, 6, 9, 10, $15,18,30,45$ and 90 . These are the twelve possible values for the common difference, d. That means there are $\mathbf{1 2}$ distinct arithmetic sequences that meet the given conditions.
8. Let's start with the case in which the sum includes five 1 . Then we'll reduce the number of 1 s while listing the sums for each case.

CASE 1: In the case of five 1 s , there is only 1 sum: $13+1+1+1+1+1$.
CASE 2: In the case of four 1 s , the other two odd numbers must add up to 14 . There are three possibilities: $11+3,9+5$ and $7+7$. This case yields $\underline{3}$ sums.
CASE 3: In the case of three 1 s , the other three odd numbers must add up to 15 . There are three possibilities: $9+3+3,7+5+3$ and $5+5+5$. This case yields $\underline{3}$ sums.
Case 4: In the case of two 1 s , the other four odd numbers must add up to 16 . There are two possibilities: $7+3+3+3$ and $5+5+3+3$. This case yields $\underline{2}$ sums.
CASE 5: In the case of one 1 , the other five odd numbers must add up to 17 . There is one possibility: $5+3+3+3+3$. This case yields 1 sum.
CASE 6: In the case of no 1 s , there is one possibility with six odd numbers that add up to 18 : $3+3+3+3+3+3$. This case yields 1 sum.
These six cases yield a total of $1+3+3+2+1+1=\mathbf{1 1}$ sums.

