MATHCOUNTS ${ }^{\circ}$ Problem of the Week Archive

Follow the Rules - May 8, 2023

Problems \& Solutions

Define $x @ y$ as $\left(x^{3}-y\right) / x$, for distinct positive integers x and y. What is the value of 5 @ 10?

Evaluating 5 @ 10 yields $\left(5^{3}-10\right) / 5=(125-10) / 5=115 / 5=23$.
Define $a \# b$ as $a^{2}-b^{2}-a b$, for real numbers a and b. What is the value of 5 \# (4 \# 3)?

Let's first evaluate the expression inside the parentheses. We have $4 \# 3=4^{2}-3^{2}-4(3)=16-9-12=$ -5 . We now evaluate $5 \#(-5)$ to get $5^{2}-(-5)^{2}-5(-5)=25-25+25=25$.

Define $m \$ n$ as $m^{2}+2 m / n$ and define $m \& n$ as $\left(m^{2}-n^{2}+m n\right) /(2 n)$. What is the value of $(4 \$ 2) \& 10$?

$$
\begin{aligned}
& \text { Again, let's first evaluate the expression inside the parentheses. We have }(4 \$ 2)=4^{2}+2(4) / 2=16+8 / 2= \\
& 16+4=20 \text {. We now evaluate } 20 \& 10 \text { to get }\left[20^{2}-10^{2}+20(10)\right] /[2(10)]=(400-100+200) / 20=500 / 20 \\
& =\mathbf{2 5} \text {. }
\end{aligned}
$$

MATHCOUNTS ${ }^{\circ}$ Problem of the Week Archive

Follow the Rules - May 8, 2023

Problems

Define $x @ y$ as $\left(x^{3}-y\right) / x$, for distinct positive integers x and y. What is the value of $5 @ 10$?
Define $a \# b$ as $a^{2}-b^{2}-a b$, for real numbers a and b. What is the value of 5 \# (4 \# 3)?
Define $m \$ n$ as $m^{2}+2 m / n$ and define m \& n as $\left(m^{2}-n^{2}+m n\right) /(2 n)$. What is the value of $(4 \$ 2) \& 10$?

